Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 922: 171375, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431162

RESUMEN

Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.


Asunto(s)
Glicósidos , Vibrio , Glicósidos/toxicidad , Simulación del Acoplamiento Molecular , Interacciones Farmacológicas , Transactivadores/farmacología
2.
Environ Res ; 248: 118418, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316386

RESUMEN

There is potential for personal care products (PCPs) components and mixtures to induce hormesis. How hormesis is related to time and transmitted from components to mixtures are not clear. In this paper, we conducted determination of components in 16 PCP products and then ran frequent itemset mining on the component data. Five high-frequency components (HFCs), betaine (BET), 1,3-butanediol (BUT), ethylenediaminetetraacetic acid disodium salt (EDTA), glycerol (GLO), and phenoxyethanol (POE), and 14 mixtures were identified. For each mixture system, one mixture ray with the actual mixture ratios in the products was selected. Time-dependent microplate toxicity analysis was used to test the luminescence inhibition toxicity of five HFCs and 14 mixture rays to Vibrio qinghaiensis sp.-Q67 at 12 concentration gradients and eight exposure times. It is showed that BET, EDTA, POE, and 13 mixture rays containing at least one J-type component showed time-dependent hormesis. Characteristic parameters used to describe hormesis revealed that the absolute value of the maximum stimulatory effect (|Emin|) generally increased with time. Notably, mixtures composed of POE and S-type components showed greater |Emin| than POE alone at the same time. Importantly, the maximum stimulatory effective concentration, NOEC/the zero effective concentration point, and EC50 remained relatively stable. Nine hormesis transmission phenomena were observed in different mixture rays. While all mixtures primarily exhibited additive action, varying degrees of synergism and antagonism were noted in binary mixtures, with no strong synergism or antagonism observed in ternary and quaternary mixtures. These findings offer valuable insights for the screening of HFCs and their mixtures, as well as the study of hormesis transmission in personal care products.


Asunto(s)
Cosméticos , Vibrio , Hormesis , Ácido Edético
3.
J Environ Manage ; 328: 117028, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525737

RESUMEN

Biochar is an environmentally friendly material with potential applications in water purification. In this study, herb residue nitrogen-doped biochar (N-BC) was fabricated and used to activate peroxymonosulfate (PMS). Characterization and density-functional theory (DFT) studies were conducted to explore the influence of nitrogen doping. Radical scavenging activity and electron paramagnetic resonance (EPR) spectroscopy revealed that non-radical singlet oxygen (1O2) is the main reactive oxidative species. Additionally, pyridinic-N was shown to play a pivotal role in the 1O2-dominated pathway. Three possible degradation pathways were proposed based on the identified degradation intermediates. Batch experiments confirmed that N-BC showed excellent catalytic performance and reusability. The best condition for tetracycline (TC) degradation efficiency (>99%) in 60 min was obtained when the dosage of N-BC was 1 g/L and the concentration of PMS was 5 mM. Furthermore, N-BC showed approximately 65.5% degradation efficiency within 4 cycles. Furthermore, the toxicity of degradation intermediates was examined using ECOSAR and T.E.S.T procedures. This study brings forth a feasible strategy to synthesize biochar. Furthermore, the proposed approach will facilitate the use of biochar in water purification.


Asunto(s)
Carbón Orgánico , Nitrógeno , Carbón Orgánico/química , Tetraciclina , Antibacterianos , Peróxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...